Journal of Organometallic Chemistry, 128 (1977) C5-C7 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

A THREE-MEMBERED RING FORMED THROUGH INTERNAL METALLATION IN A DIPHENYLMETHYLPHOSPHINE—PLATINUM(II) COMPLEX

S. BRESADOLA*, B. LONGATO and F. MORANDINI

Istituto Chimico dell'Università di Trieste, Trieste (Italy) and C.N.R., Centro di Studio sulla Stabilità e Reattività dei Composti di Coordinazione, Istituto di Chimica Analitica, Università di Padova, Padova (Italy)

(Received January 4th, 1977)

Summary

Prolonged treatment of cis-(MePh₂P)₂PtCl₂ with a large excess of 1-Li-2-C₆H₅-1,2-B₁₀C₂H₁₀ in ether gives the internally metallated complex cis-1-[(MePh₂P)-Pt(PCH₂Ph₂)]-2-C₆H₅-1,2-(σ -B₁₀C₂H₁₀) in which a methyl group of one coordinated phosphine is involved in the ring formation.

In previous papers [1, 2] we reported that the reaction of trans-L₂PtCl₂ (L = $P(C_2H_5)_3$, $P(n-C_3H_7)_3$) with lithium-carborane derivatives yields internally metallated complexes of platinum(II) containing 1,2- or 1,7-dicarba-closo-dodecaborane(12) bonded through metal-carbon σ bonds. These complexes were the first well established examples of intramolecular metallation involving a C-H bond of an alkyl group in trialkylphosphine metal complexes. Structural X-ray analysis showed the platinum to be coordinated via σ bond by the carboranyl group through its C(1) atom and the other three coordination positions to be occupied by two mutually cis P atoms of phosphine ligands and by the first carbon atom of one alkyl side group of the phosphines [3]*. These results indicate that the internal metallation gives a three-membered Pt-P-C ring rather than a fourmembered ring, as we first suggested [2]. Recently, an intramolecular C-H addition in a trimethylphosphine complex of iron(0) with formation of a threemembered Fe-P-C ring has also been reported [5]. In order to extend our researches on the intramolecular metallation reactions we have investigated the chemistry of the carborane complexes of platinum(II) containing diphenylmethylphosphine ligands.

A solution of 4.5 mmol of 1-Li-2- C_6H_5 -1,2- $B_{10}C_2H_{10}$ in 10 ml of diethyl ether was added dropwise to a stirred suspension of 1.5 mmol of *cis*-(Ph₂MeP)₂-

*The X-ray data on the triethylphosphineplatinum(II) complex are in course of publication [4].

PtCl₂ in 10 ml of diethyl ether under argon at room temperature. After being stirred for 16 h, the mixture was washed with H_2O . The organic layer was separated, dried (Na_2SO_4), filtered and rotary evaporated. The pale yellow product was purified by repeated recrystallization from CH₂Cl₂/n-hexane to give white pure crystals of $1-[(Ph_2MeP)P_t(PCH_2Ph_2)]-2-C_6H_5-1,2-(\sigma-B_{10}C_2H_{10}), I,$ (15% yield based on cis-(Ph2MeP)2PtCl2), m.p. 180-181°C. Anal. Found: C, 50.55; H, 4.86. PtP₂B₁₀C₃₄H₄₀ calcd.: C, 50.17; H, 4.95%. Mol. wt. Found: 810 (osmometric in 1,2-dichloroethane); calcd.: 814.

This complex react with dry HCl in benzene at room temperature to give cis-1- $[(Ph_2MeP)_2PtCl]-2-C_6H_5-1,2-(\sigma-B_{10}C_2H_{10})^*$. Collectively, these results and the IR and NMR** spectroscopic data allow us to assign the structure shown in Fig. 1. Thus, the infrared spectrum (Nujol mull) exhibits, in addition to the ab-

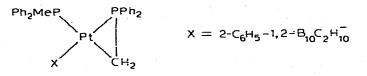


Fig. 1.

sorption bands due to the phosphine ligands, the strong absorptions in the region 2580-2610 cm⁻¹ assigned to ν (B-H) of the dicarba-closo-dodecaborane(12) ligand. Since no bands characteristic of ortho-disubstituted phenyl rings [6] are observed, internal metallation through an ortho-C-H bond of one phenyl side group can be ruled out.

The ¹H NMR spectrum of I at 60 MHz in CDCl₃ (TMS internal) shows two doublets of relative total intensities 3/2 centred at τ 7.92 ppm (J(PH) 8.5 Hz) and τ 9.20 ppm (J(PH) 9.5 Hz) which are assigned to the CH₃ protons of one phosphine ligand and to the CH₂ protons of the other "metallated" phosphine, respectively. These signals are flanked by their corresponding satellites due to coupling with the platinum-195 isotope, with J(Pt-H) values of 26.0 and 45.1 Hz at low and high field, respectively***. The ³¹P NMR spectrum at 24.28 MHz in CDCl₃ exhibits two doublets of relative total intensities 1/1 centred at δ -7.9 and δ +17.7 ppm (shifts relative to external 85% H₃PO₄) with J(P-P) 31 Hz. indicating that the phosphine ligands are in mutual cis positions. Each main peak of the ³¹P resonances show coupling to platinum with J(Pt-P) values of 3298 and 1641 Hz at low and high field, respectively. These phosphorus resonances can be compared with those exhibited by the corresponding and structurally welldefined complex cis-(n-Pr₃P)Pt[P(CHCH₂CH₃)(n-Pr)₂](o-carb), II [3]. The ³¹P NMR spectrum of II (CDCl₃ solution) shows two doublets of relative total intensities 1/1 centred at $\delta - 8.1$ and $\delta + 28.0$ ppm (J(PP) 29 Hz) with their corresponding pairs of satellites due to the 195 Pt splitting with J(Pt-P) values of 3073 and 1686 Hz at low and high field, respectively.

^{*}The chlorocarborane derivative was identified by comparison with an authentic sample prepared otherwise: unpublished data.

The NMR spectra were obtained with WP-60 FTNMR and HFX-90 Bruker spectrometers. ¹H chemical shifts vs. TMS are ± 0.01 ppm; J(Pt-H) and J(P-H) are ± 0.2 Hz. ³¹P chemical shifts vs. H₃PO₄ are ± 0.1 ppm; J(P-P) and J(Pt-P) are ± 1 Hz.

At 90 MHz in CH1Cl, an identical 'H NMR pattern was obtained.

Our results show that a bulky ligand such as the carborane promotes internal metal-carbon bond formation in platinum(II)-tertiary phosphine complexes and confirm that the formation of a three-membered Pt-P-C ring is much favoured.

References

- S. Bresadola, P. Rigo and A. Turco, Chem. Commun., (1968) 1205.
 S. Bresadola, A. Frigo, B. Longato and G. Rigatti, Inorg. Chem., 12 (1973) 2788.
- 3 N. Bresciani, M. Calligaris, P. Delise, G. Nardin and L. Randaccio, J. Amer. Chem. Soc., 96 (1974) 5642. 4 N. Bresciani Pahor, in preparation.
- 5 J.W. Rathke and E.L. Muetterties, J. Amer. Chem. Soc., 97 (1975) 3272.
- 6 L.J. Bellamy, The infrared spectra of Complex Molecules, Methuen, London, 1958, p. 77.